Android Projects

Android Projects

Several projects aiming to create androids that look, and, to a certain degree, speak or act like a human being have been launched or are underway. Japanese robotics have been leading the field since the 1970s. Waseda University initiated the WABOT project in 1967, and in 1972 completed the WABOT-1, the first android, a full-scale humanoid intelligent robot. Its limb control system allowed it to walk with the lower limbs, and to grip and transport objects with hands, using tactile sensors. Its vision system allowed it to measure distances and directions to objects using external receptors, artificial eyes, and ears. And its conversation system allowed it to communicate with a person in Japanese, with an artificial mouth. In 1984, WABOT-2 was revealed and made a number of improvements. It was capable of playing the organ. Wabot-2 had 10 fingers and two feet and was able to read a score of music. It was also able to accompany a person. In 1986, Honda began its humanoid research and development program, to create humanoid robots capable of interacting successfully with humans.

The Intelligent Robotics Lab, directed by Hiroshi Ishiguro at Osaka University, and Kokoro Co., Ltd. have demonstrated the Actroid at Expo 2005 in Aichi Prefecture, Japan and released the Telenoid R1 in 2010. In 2006, Kokoro Co. developed a new DER 2 android. The height of the human body part of DER2 is 165 cm. There are 47 mobile points. DER2 can not only change its expression but also move its hands and feet and twist its body. The “air servosystem” which Kokoro Co. developed originally is used for the actuator. As a result of having an actuator controlled precisely with air pressure via a servo system, the movement is very fluid and there is very little noise. DER2 realized a slimmer body than that of the former version by using a smaller cylinder. Outwardly DER2 has a more beautiful proportion. Compared to the previous model, DER2 has thinner arms and a wider repertoire of expressions. Once programmed, it is able to choreograph its motions and gestures with its voice.

The Intelligent Mechatronics Lab, directed by Hiroshi Kobayashi at the Tokyo University of Science, has developed an android head called Saya, which was exhibited at Robodex 2002 in Yokohama, Japan. There are several other initiatives around the world involving humanoid research and development at this time, which will hopefully introduce a broader spectrum of realized technology in the near future. Now Saya is working at the Science University of Tokyo as a guide. The Waseda University (Japan) and NTT Docomo’s manufacturers have succeeded in creating a shape-shifting robot WD-2. It is capable of changing its face. At first, the creators decided the positions of the necessary points to express the outline, eyes, nose, and so on of a certain person. The robot expresses its face by moving all points to the decided positions, they say. The first version of the robot was first developed back in 2003. After that, a year later, they made a couple of major improvements to the design. The robot features an elastic mask made from the average head dummy. It uses a driving system with a 3DOF unit. The WD-2 robot can change its facial features by activating specific facial points on a mask, with each point possessing three degrees of freedom. This one has 17 facial points, for a total of 56 degrees of freedom. As for the materials they used, the WD-2’s mask is fabricated with a highly elastic material called Septum, with bits of steel wool mixed in for added strength. Other technical features reveal a shaft driven behind the mask at the desired facial point, driven by a DC motor with a simple pulley and a slide screw. Apparently, the researchers can also modify the shape of the mask based on actual human faces. To “copy” a face, they need only a 3D scanner to determine the locations of an individual’s 17 facial points. After that, they are then driven into position using a laptop and 56 motor control boards. In addition, the researchers also mention that the shifting robot can even display an individual’s hairstyle and skin color if a photo of their face is projected onto the 3D Mask.

Leave a Reply

TEST1